Net Deals Web Search

Search results

  1. fre·quen·cy re·sponse

    /ˈfrēkwənsē rəˈspäns/

    noun

    • 1. the dependence on signal frequency of the output–input ratio of an amplifier or other device.
  2. Results From The WOW.Com Content Network
  3. Frequency response - Wikipedia

    en.wikipedia.org/wiki/Frequency_response

    Frequency response. In signal processing and electronics, the frequency response of a system is the quantitative measure of the magnitude and phase of the output as a function of input frequency. [1] The frequency response is widely used in the design and analysis of systems, such as audio and control systems, where they simplify mathematical ...

  4. Frequency - Wikipedia

    en.wikipedia.org/wiki/Frequency

    Frequency (symbol f ), most often measured in hertz (symbol: Hz), is the number of occurrences of a repeating event per unit of time. [1] It is also occasionally referred to as temporal frequency for clarity and to distinguish it from spatial frequency.

  5. Bandwidth (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Bandwidth_(signal_processing)

    A less strict and more practically useful definition will refer to the frequencies beyond which performance is degraded. In the case of frequency response, degradation could, for example, mean more than 3 dB below the maximum value or it could mean below a certain absolute value

  6. Filter (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Filter_(signal_processing)

    The frequency response can be classified into a number of different bandforms describing which frequency bands the filter passes (the passband) and which it rejects (the stopband): Low-pass filter – low frequencies are passed, high frequencies are attenuated. High-pass filter – high frequencies are passed, low frequencies are attenuated.

  7. Resonance - Wikipedia

    en.wikipedia.org/wiki/Resonance

    ω 0 = k / m {\textstyle \omega _ {0}= {\sqrt {k/m}}} is called the undamped angular frequency of the oscillator or the natural frequency, ζ = c 2 m k {\displaystyle \zeta = {\frac {c} {2 {\sqrt {mk}}}}} is called the damping ratio. Many sources also refer to ω0 as the resonant frequency.

  8. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    In electrical engineering and control theory, a Bode plot / ˈ b oʊ d i / is a graph of the frequency response of a system. It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift.

  9. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    Time axis in units of the time constant τ. The response damps out to become a simple sine wave. Frequency response of system vs. frequency in units of the bandwidth f3dB. The response is normalized to a zero frequency value of unity, and drops to 1/√2 at the bandwidth.

  10. Response spectrum - Wikipedia

    en.wikipedia.org/wiki/Response_spectrum

    A response spectrum is a plot of the peak or steady-state response (displacement, velocity or acceleration) of a series of oscillators of varying natural frequency, that are forced into motion by the same base vibration or shock.

  11. Frequency domain - Wikipedia

    en.wikipedia.org/wiki/Frequency_domain

    In mathematics, physics, electronics, control systems engineering, and statistics, the frequency domain refers to the analysis of mathematical functions or signals with respect to frequency (and possibly phase), rather than time, as in time series. [1]

  12. Frequency modulation - Wikipedia

    en.wikipedia.org/wiki/Frequency_modulation

    Frequency modulation (FM) is the encoding of information in a carrier wave by varying the instantaneous frequency of the wave. The technology is used in telecommunications, radio broadcasting, signal processing, and computing.